
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

July 7 2011

Administration

● Class is in BA1140 Next week.

● Midterms will be given out in the second break.

● The mean was a 28.8.

● Median was 31.

● Assignment 1 autotesting results have been mailed to
your cdf e-mails.

● I am aware that Assignment 2 was too difficult, and the
grading will reflect that.

● Assignment 3 comes out tomorrow or on the weekend.

July 7 2011

The Structure of Programming.

● At the most basic level there is Machine Code.
● We don't do this.

● Then we have lines of code in a programming
language.
● But often times we use the same code.

● Then we have functions on top of that.
● We can reuse code, but often code is very use

specific.
● There are also built-in functions.

July 7 2011

The Structure of Programming.

● So we can divide our code into Modules.
● This means we don't need to evaluate massive

amounts of code any time we need to get
something done.

● Modules have their own functions.
● Helps with separating programs.

● In a similar way, we saw that types have
methods.

July 7 2011

Classes

● Python allows us to build our own types.
● These are called classes.
● When we have a class, we can create

instances/objects of that class.
● Recall the difference between a type (str, int)

and a value ('this is a string', 10).
● This is analogous to the difference between a

class and an object.

July 7 2011

Classes

● To make a class we just do:
class Class_name(object):

 block

● Class is a keyword and object is a type.
● Class names start with Capital letters by

convention.
● To create objects or instances of Class_name

we use:
x = Class_name()

July 7 2011

Class methods.

● So far our class objects can't do a whole lot.

● One way to make them more useful is to add methods to
class objects.

● We do this by putting them in the block of code under the
class name.

● But we want our methods to work on each individual class
object.

● Ie. when we call 'aaa'.isUpper() we want it to only work on
'aaa' not on all strings.

● How can we get our method to refer to our class object
rather than to all classes?

July 7 2011

Class methods.

● To solve this issue we use the keyword self
● Say we have a class Patient that is meant to

store information about patients in a hospital.
● We may want to update the patient's age.
● To do this we need a method set_age.

class Patient(object):

def set_age(self, age):

 self.age = age

July 7 2011

Class methods.

● Note that these are methods, so that if we have
a patient p1 to set his age we use
p1.set_age(10) and not
p1.set_age(p1,10)

● Self should always be the first parameter in a
method but it is passed for free when we call
the method.

July 7 2011

Class Constructors.

● There is also away to set class variables when
you construct class instances.

● The special method __init__ is called whenever
you try and construct an instance of an object.

class Patient(object):

def __init__(self, name, age):

 self.name = name

 self.age = age

● Called by x = Patient(“Joey”, 10)

July 7 2011

Class methods: Special Methods.

● __ indicates that the method is a special
method.

● These are used to make our classes work more
like Python's built-in types.

● For example:
● __str__ is used when printing
● __cmp__ is used to allow boolean operations.
● __add__ is used to allow the + operator.
● __iter__ is used to allow your type to be used in

for loops.

July 7 2011

Classes - Encapsulation

● One of the big benefits of classes is that they
hide implementation details from the user.

● We call this encapsulation.
● A well designed class has methods that allow

the user to get out all the information they need
out of it.
● This allows a user to concentrate on their code

rather than on your code.

● This also frees you to change the internal
implementation of the class.

July 7 2011

Class conventions.

● Class names start with upper case letters.
● Class methods and instances start with lower

case letters.
● Method definitions should have docstrings just

like function definitions.
● Classes should have docstrings just like

modules have docstrings that describe what the
class does.

July 7 2011

Break, the first.

July 7 2011

The Structure of Programming.

● We want our programs to be both reusable and
extendable.

● Reusable means that other people can easily
take our code and use it for their problems.

● Extendable means that it's easy to modify our
code to handle new issues that come up.

● How do we resolve the tension between the
two?

July 7 2011

Classes - Inheritance

● We want a way to allow modifications to
existing code, that don't alter the ability of
existing code to run.

● One way we could do this is to write a new
class that copies the old class plus has some
new functions.

● This is a lot of work, especially if you decide to
change the old class down the road.

July 7 2011

Classes - Inheritance

● Instead we can use Inheritance.
● Classes are allowed to inherit methods and

variables from other classes.
● If class A inherits from class B, then class B is

called the superclass, and class A the subclass.
● Classes inherit all of the methods and variables

in the superclass.
● One can overwrite or add new methods in the

subclass as appropriate.

July 7 2011

Classes – Inheritance

● The syntax for creating subclasses is:
● class Class_name(Subclass_name):

 block

● Note that this means our previous class is a
subclass of the class object.

● If you define a method with the same name as
one in the superclass, you overwrite it.

July 7 2011

Classes - Inheritance

● Inheritance is a really powerful tool that is easy
to abuse.

● Inheritance should be used to represent 'is-a'
relations.
● So a Surgery Patient is a type of Patient.
● A mammal is a type of animal.
● A party is a type of event.

● When coming up on to a new problem, a
common first step is to think about class
structures and what objects you'll need.

July 7 2011

Break, the second

July 7 2011

Midterm Review

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

